Biometric Identification using Electroencephalography

نویسندگان

  • C. Gope
  • N. Kehtarnavaz
  • P. Jahankhani
  • V. Kodogiannis
  • John Vincent Atanasoff
  • M. Poulos
  • M. Rangoussi
  • V. Chrissikopoulos
چکیده

In this paper, investigate the use of brain activity for person identification. A biometric system is a technological system that uses information about a person. Research on brain signals show that each individual has a unique brain wave pattern. Electroencephalography signals generated by mental tasks are acquired to extract the distinctive brain signature of an individual. Electroencephalography signals during four biometric tasks, namely relax, math, read and spell was acquired from 50 subjects. Features are derived from power spectral density. Classification is performed using Feed forward neural network and Recurrent neural network. The performance of the neural model was evaluated in terms of training, performance and classification accuracies. The results confirmed that the proposed scheme has potential in classifying the EEG signals. RNN is considerably better with an average accuracy of 95% for the spell task and 92% for the read tasks in comparison with a feed forward neural network. The results validate the feasibility of using brain signatures for biometrics study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biometric Identification using Electroencephalography

In this paper, investigate the use of brain activity for person identification. A biometric system is a technological system that uses information about a person. Research on brain signals show that each individual has a unique brain wave pattern. Electroencephalography signals generated by mental tasks are acquired to extract the distinctive brain signature of an individual. Electroencephalogr...

متن کامل

Maximum a Posteriori Model Adaptation

In this paper, we investigate the use of brain activity for person authentication. It has been shown in previous studies that the brain-wave pattern of every individual is unique and that the electroencephalogram (EEG) can be used for biometric identification. EEG-based biometry is an emerging research topic and we believe that it may open new research directions and applications in the future....

متن کامل

Analysis of the EEG Signal for a Practical Biometric System

This paper discusses the effectiveness of the EEG signal for human identification using four or less of channels of two different types of EEG recordings. Studies have shown that the EEG signal has biometric potential because signal varies from person to person and impossible to replicate and steal. Data were collected from 10 male subjects while resting with eyes open and eyes closed in 5 sepa...

متن کامل

Overcoming Inter-Subject Variability In BCI Using EEG-Based Identification

The high dependency of the Brain Computer Interface (BCI) system performance on the BCI user is a wellknown issue of many BCI devices. This contribution presents a new way to overcome this problem using a synergy between a BCI device and an EEG-based biometric algorithm. Using the biometric algorithm, the BCI device automatically identifies its current user and adapts parameters of the classifi...

متن کامل

PIN Generation Using Single Channel EEG Biometric

This paper investigates a method to generate personal identification number (PIN) using brain activity recorded from a single active electroencephalogram (EEG) channel. EEG based biometric to generate PIN is less prone to fraud and the method is based on the recent developments in brain-computer interface (BCI) technology, specifically P300 based BCI designs. Our perfect classification accuraci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016